Extensions 1→N→G→Q→1 with N=C22 and Q=C6×Dic5

Direct product G=N×Q with N=C22 and Q=C6×Dic5
dρLabelID
Dic5×C22×C6480Dic5xC2^2xC6480,1148

Semidirect products G=N:Q with N=C22 and Q=C6×Dic5
extensionφ:Q→Aut NdρLabelID
C22⋊(C6×Dic5) = C2×A4×Dic5φ: C6×Dic5/C2×Dic5C3 ⊆ Aut C22120C2^2:(C6xDic5)480,1044
C222(C6×Dic5) = C3×D4×Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C22240C2^2:2(C6xDic5)480,727
C223(C6×Dic5) = C6×C23.D5φ: C6×Dic5/C2×C30C2 ⊆ Aut C22240C2^2:3(C6xDic5)480,745

Non-split extensions G=N.Q with N=C22 and Q=C6×Dic5
extensionφ:Q→Aut NdρLabelID
C22.1(C6×Dic5) = C3×D4.Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C222404C2^2.1(C6xDic5)480,741
C22.2(C6×Dic5) = C3×C20.D4φ: C6×Dic5/C2×C30C2 ⊆ Aut C221204C2^2.2(C6xDic5)480,111
C22.3(C6×Dic5) = C3×C23⋊Dic5φ: C6×Dic5/C2×C30C2 ⊆ Aut C221204C2^2.3(C6xDic5)480,112
C22.4(C6×Dic5) = C3×C20.10D4φ: C6×Dic5/C2×C30C2 ⊆ Aut C222404C2^2.4(C6xDic5)480,114
C22.5(C6×Dic5) = C6×C4.Dic5φ: C6×Dic5/C2×C30C2 ⊆ Aut C22240C2^2.5(C6xDic5)480,714
C22.6(C6×Dic5) = C3×C23.21D10φ: C6×Dic5/C2×C30C2 ⊆ Aut C22240C2^2.6(C6xDic5)480,719
C22.7(C6×Dic5) = C12×C52C8central extension (φ=1)480C2^2.7(C6xDic5)480,80
C22.8(C6×Dic5) = C3×C42.D5central extension (φ=1)480C2^2.8(C6xDic5)480,81
C22.9(C6×Dic5) = C3×C203C8central extension (φ=1)480C2^2.9(C6xDic5)480,82
C22.10(C6×Dic5) = C3×C20.55D4central extension (φ=1)240C2^2.10(C6xDic5)480,108
C22.11(C6×Dic5) = C3×C10.10C42central extension (φ=1)480C2^2.11(C6xDic5)480,109
C22.12(C6×Dic5) = C2×C6×C52C8central extension (φ=1)480C2^2.12(C6xDic5)480,713
C22.13(C6×Dic5) = Dic5×C2×C12central extension (φ=1)480C2^2.13(C6xDic5)480,715
C22.14(C6×Dic5) = C6×C4⋊Dic5central extension (φ=1)480C2^2.14(C6xDic5)480,718

׿
×
𝔽